Электрофизические методы обработки металлов
Расширенное внедрение труднообрабатываемых материалов для производства деталей машин, усложнение конструкций этих деталей в купе с вырастающими требованиями к понижению себестоимости и повышению производительности послужило предпосылкой разработки и освоения способов электрофизической обработки.
Электрофизические способы обработки металлов основаны на использовании специфичных явлений, возникающих под действием электронного тока, для удаления материала либо конфигурации формы заготовки.
Главным преимуществом электрофизических способов обработки металлов является возможность их использования для конфигурации формы заготовок из материалов, не поддающихся обработке резанием, причём обработка этими способами происходит в критериях деяния малых сил либо при полном их отсутствии.
Принципиальным преимуществом электрофизических способов обработки металлов является независимость производительности большинства из их от твёрдости и хрупкости обрабатываемого материала. Трудоёмкость и продолжительность этих способов обработки материалов завышенной твёрдости (НВ>400) меньше, чем трудоёмкость и продолжительность обработки резанием.
Электрофизические способы обработки металлов обхватывает фактически все операции механической обработки и не уступает большинству из их по достигаемой шероховатости и точности обработки.
Электроэрозионная обработка металлов
Электроэрозионная обработка является разновидностью электрофизической обработки и характеризуется тем, что изменение формы, размеров и свойства поверхности заготовки происходит под действием электронных разрядов.
Электронные разряды появляются при пропускании импульсного электронного тока в зазоре шириной 0,01 – 0,05 мм меж электродом-заготовкой и электродом-инструментом. Под действием электронных разрядов материал заготовки плавится, испаряется и удаляется из межэлектродного зазора в водянистом либо парообразном состоянии. Подобные процессы разрушения электродов (заготовок) именуют электронной эрозией.
В целях интенсификации электронной эрозии зазор меж заготовкой и электродом заполняют диэлектрической жидкостью (керосин, минеральное масло, дистиллированная вода). При достижении на электродах напряжения, равного напряжению пробоя, в среде меж электродом и заготовкой появляется канал проводимости в виде заполненной плазмой цилиндрической области малого сечения с плотностью тока 8000 – 10000 А/мм2. Высочайшая плотность тока, поддерживаемая в течении 10-5 – 10-8с, обеспечивает температуру на поверхности заготовки до 10000 — 12000˚С.
Удаленный с поверхности заготовки металл охлаждается диэлектрической жидкостью и застывает в виде сферических гранул поперечником 0,01 – 0,005 мм. В каждый следующий момент времени импульс тока пробивает межэлектродный зазор в том месте, где просвет меж электродами оказался минимальным. Непрерывное подведение импульсов тока и автоматическое сближение электрода-инструмента с электродом-заготовкой обеспечивают продолжение эрозии до того времени, пока не будет, достигнут данный размер заготовки либо не будет удален весь металл заготовки в межэлектродном зазоре.
Режимы электроэрозионной обработки делятся на электроискровые и электроимпульсные.
Электроискровые режимы характеризуются внедрением искровых разрядов с малой продолжительностью (10-5…10-7с) при прямой полярности подключения электродов (заготовка “+”, инструмент “-”).
Зависимо от мощности искровых разрядов режимы делятся на жесткие и средние (для подготовительной обработки), мягенькие и особо мягенькие (для конечной обработки). Внедрение мягеньких режимов обеспечивает отклонение размеров детали до 0,002 мм при параметре шероховатости обработанной поверхности Rа=0.01 мкм. Электроискровые режимы употребляют при обработке жестких сплавов, труднообрабатываемых металлов и сплавов, тантала, молибдена, вольфрама и т.д.; обрабатывают сквозные и глубочайшие отверстия хоть какого поперечного сечения, отверстия с криволинейными осями; используя проволочные и ленточные электроды, вырезают детали из листовых заготовок; нарезают зубья и резьбы; шлифуют и клеймят детали.
Для проведения обработки на электроискровых режимах употребляют станки (см. рис.), снаряженные RC-генераторами, состоящего из заряженного и разряженного контура. Зарядный контур включает конденсатор С, заряжающийся через сопротивление R от источника тока с напряжением 100 – 200 В, а в разрядный контур параллельно конденсатору С включены электроды 1 (инструмент) и 2 (заготовка).
Как напряжение на электродах добивается пробойного, через межэлектродный зазор происходит искровой разряд энергии, скопленной в конденсаторе С. Производительность эрозионного процесса может быть увеличена уменьшением сопротивления R. Всепостоянство межэлектродного зазора поддерживается специальной следящей системой, управляющей механизмом автоматического движения подачи инструмента, сделанного из меди, латуни либо углеграфитных материалов.
Электроимпульсные режимы характеризуются применением импульсов большой продолжительности (0,5…10 с), соответственных дуговому уровню меж электродами и поболее насыщенному разрушению катода. В связи с этим при электроимпульсных режимах катод соединяется с заготовкой, что обеспечивает более высшую производительность эрозии (в 8-10 раз) и наименьшей, чем при электроискровых режимах, износ инструмента.
Более целесообразной областью внедрения электроимпульсных режимов является подготовительная обработка заготовок сложнопрофильных деталей (штампы, турбины, лопатки и т.д.), сделанных из труднообрабатываемых сплавов и сталей.
Электроимпульсные режимы реализуются установками (см рис), в каких на электроды 1 и 2 подаются униполярные импульсы от электромашинного 3 либо электрического генератора. Появление Э.Д.С. индукции в намагниченном теле передвигающимся под неким углом к направлению оси намагничивания позволяет получать ток большей величины.
Лучевая обработка металлов
Разновидностями лучевой обработки в машиностроении является электронно-лучевая либо светолучевая обработка.
Электронно-лучевая обработка металлов базирована на термическом воздействии потока передвигающихся электронов на обрабатываемый материал, который в месте обработки плавится и испаряется. Настолько насыщенный нагрев вызывается тем, что кинетическая энергия передвигающихся электронов при ударении о поверхность обрабатываемой заготовки практически стопроцентно перебегает в термическую, которая будучи сконцентрирована на площадке малых размером (менее 10 мкм), вызывает её разогревание до 6000˚С.
При размерной обработке, как понятно, происходит локальное воздействие на обрабатываемый материал, что при электроннонно-лучевой обработке обеспечивается импульсным режимом потока электронов с длительностью импульсов 10-4…10-6 с и частотой f = 50 … 5000 Гц.
Высочайшая концентрация энергии при электронно-лучевой обработке в купе с импульсным воздействием обеспечивают условия обработки, при которых поверхности заготовки, находящиеся на расстоянии 1 мкм от кромки электрического луча, разогреваются до 300˚С. Это позволяет использовать электронно-лучевую обработку для резки заготовок, производства сеток из фольги, вырезания пазов и обработки отверстий поперечником 1 – 10 мкм в деталях из труднообрабатываемых материалов.
В качестве оборудования для проведения электронно-лучевой обработки употребляют особые электровакуумные устройства, именуемые электрическими пушками (см рис). Они генерируют, ускоряют и фокусируют электрический луч. Электрическая пушка состоит из вакуумной камеры 4 (с разрежением 133·10-4), в какой установлен питаемый источником высочайшего напряжения 1 вольфрамовый катод 2, обеспечивающий эмиссию свободных электронов, которые разгоняются электронным полем, сделанным меж катодом 2 и анодной диафрагмой 3.
Дальше электрический луч проходит через систему магнитных линз 9, 6, устройство электронной юстировки 5 и фокусируется на поверхности обрабатываемой заготовки 7, установленной на координатном столе 8. Импульсный режим работы электрической пушки обеспечивается системой состоящей из импульсного генератора 10 и трансформатора 11.
Способ светолучевой обработки основан на использовании термического воздействия светового луча высочайшей энергии, излучаемого оптическим квантом генератором (лазером) на поверхность заготовки.
Размерная обработка при помощи лазеров заключается в образовании отверстий поперечником 0,5…10 мкм в труднообрабатываемых материалах, изготовлении сеток, вырезании из листа сложнопрофильных деталей и т.д.
Читайте также: квартира детям инвалидам условия в 2019-2020 году в Москве
Комментарии
Электрофизические методы обработки металлов — Комментариев нет