Электрический вал и его применение в электроприводе станков
В статье рассмотрены устройство, принцип деяния и примеры использования электронных систем синхронного вращения (электронный вал) в станках и установках.
Допустим, что два вала, не имеющие механической связи вместе, должны крутиться с схожими скоростями, не делая поворот друг относительно друга. Для обеспечения такового синхронного и синфазного вращения с движками Д1 и Д2, которые крутят соответственно валы I и II (рис. 1), связывают вспомогательные асинхронные машины А1 и А2 с фазными роторами. Роторные обмотки этих машин соединяют вместе встречно.
Если частоты вращения обеих машин и положения их роторов однообразные, то электродвижущие силы, наведенные в обмотках роторов машин А1 и А2, равны и ориентированы навстречу друг дружке (рис. 2, а), и ток в цепи роторов не протекает.
Представим, что направление вращения поля вспомогательных машин совпадает с направлением вращения их роторов. При замедлении вращения машины А2 ее ротор отстанет от ротора А1, вследствие чего э. д. с. Ер2, наведенная в обмотке ротора, сместится по фазе в сторону опережения (рис. 2, б), и в цепи роторов машин А1 и А2 под действием векторной суммы э. д. с. Е появится уравнительный ток I.
Рис. 1. Схема синхронной связи
Рис. 2. Векторные диаграммы системы синхронной связи
Вектор тока I будет отставать от вектора э. д. с. Е на угол φ. Проекция вектора тока I на вектор э. д. с. Ер2 совпадает с этим вектором по направлению. Проекция вектора тока на вектор э. д. с. Ер1 ориентирована навстречу ему. Из этого следует, что машина А2 будет работать в режиме мотора, а машина А1 — в режиме генератора. При всем этом вал машины А2 получит ускорение, а вал машины A1 — замедление. Таким макаром, машины разовьют моменты, восстанавливающие синхронное вращение валов I и II и прежнее согласованное положение в пространстве роторов машин А1 и А2. Роторы этих машин могут крутиться как по направлению вращения поля, так и в обратном направлении.
Данная система носит заглавие электронной системы синхронного вращения. Ее именуют также электронным валом. Система синхронного вращения может поменять, к примеру, ходовые винты у токарно-винторезных станков.
Потому что цепи подачи металлорежущих станков по сопоставлению с цепями головного движения потребляют обычно малую мощность, то для синхронизации головного движения с подачей может быть использована более обычная схема синхронного вращения (рис. 3). В данном случае безизбежно неизменное рассогласование меж положениями роторов машин А1 и А2, без чего в цепи ротора машины А2 не было бы тока и она не смогла бы преодолеть момент сил сопротивления цепи подачи. Потому что машина А2 получает питание от статора и ротора, то при данной системе электронного вала требуется шестипроводная подводка к движку, установленному в почти всех случаях на передвигающемся узле станка, условно показанном на рисунке штриховой линией.
Рис. 3. Системы синхронной связи томного токарно-винторезного станка
В границах углового рассогласования, не превосходящего 90°, электронный синхронизирующий момент растет. Для обеспечения значимого синхронизирующего момента машины синхронной связи при всех вероятных угловых частотах вращения должны работать с большенными скольжениями (более 0,3 — 0,5). Потому во избежание недопустимого нагрева эти машины должны быть довольно огромных размеров.
Мощность машин дополнительно наращивают, стремясь исключить воздействие колебаний нагрузки и сил трения. Используют также механические передачи, понижающие частоту вращения валов станка, а как следует, и величину угловой ошибки, приведенной к валу станка. До работы электронного вала асинхронные машины А1 и А2 включают на однофазовое питание. При всем этом ротор машины А2 занимает начальное положение, согласованное с положением ротора машины А1.
Системы синхронного вращения правильно использовать для томных станков, потому что изготовка длинноватых ходовых винтов связано со значительными трудностями. Не считая того, с повышением длины винтов либо валов, вследствие их скручивания, точность согласования обоюдного расположения частей станка миниатюризируется. В системе электронного вала расстояние меж валами никакого воздействия на точность работы оказать не может.
При использовании электронного вала исключаются, механические связи суппортов со шпинделем и очень упрощается кинематическая схема. Значимым недочетом систем электронного вала в томных станках является возможность порчи дорогостоящей заготовки при перерыве в электроснабжении, потому что при всем этом сходу появляется рассогласование. В неких случаях при таковой аварии порча заготовки может быть предотвращена методом резвого автоматического отвода инструмента.
Для станкостроения энтузиазм представляет схема с 2-мя схожими асинхронными движками с фазными роторами (рис. 4). Потому что цепь обоих роторов замкнута на реостат R, то при подключении движков к сети переменного тока оба ротора начинают крутиться.
Рис. 4. Схема синхронной связи с роторным реостатом
Кроме токов, протекающих в обмотках роторов и реостате, в цепи роторов обеих машин течет уравнительный ток. Наличие этого тока обусловливает возникновение синхронизирующего момента, вследствие чего машины крутятся синхронно. Такая система может быть применена для подъема и опускания поперечин больших строгальных, продольно-фрезерных и карусельных станков.
Благодаря системе электронного вала решается неувязка согласованного движения конвейеров, входящих в единый производственный комплекс. Наибольшее практическое применение в данном случае получил вариант синхронного вращения движков с общим преобразователем частоты.
Не считая рассмотренных систем электронного вала для станкостроения разрабатывались и применялись и другие системы с машинами переменного тока, в том числе однофазовые системы и системы с синхронными движками специальной конструкции.
Комментарии
Электрический вал и его применение в электроприводе станков — Комментариев нет