Электрический ток в жидкостях и газах
Электронный ток в жидкостях
В железном проводнике электронный ток появляется направленным движением свободных электронов и что при всем этом никаких конфигураций вещества, из которого проводник изготовлен, не происходит.
Такие проводники, в каких прохождение электронного тока не сопровождается хим переменами их вещества, именуются проводниками первого рода. К ним относятся все металлы, уголь и ряд других веществ.
Но есть в природе и такие проводники электронного тока, в каких во время прохождения тока происходят хим явления. Эти проводники именуются проводниками второго рода. К ним относятся приемущественно разные смеси в воде кислот, солей и щелочей.
Если в стеклянный сосуд налить воды и прибавить в нее несколько капель серной кислоты (либо какой-нибудь другой кислоты либо щелочи), а потом взять две железные пластинки и присоединить к ним проводники опустив эти пластинки в сосуд, а к другим концам проводников подключить источник тока через выключатель и амперметр, то произойдет выделение газа из раствора, при этом оно будет длиться безпрерывно, пока замкнута цепь т.к. подкисленная вода вправду является проводником. Не считая того, пластинки начнут покрываться пузырьками газа. Потом эти пузырьки будут отрываться от пластинок и выходить наружу.
При прохождении по раствору электронного тока происходят хим конфигурации, в итоге которых выделяется газ.
Проводники второго рода именуются электролитами, а явление, происходящее в электролите при прохождении через него электронного тока, — электролизом.
Железные пластинки, опущенные в электролит, именуются электродами; одна из их, соединенная с положительным полюсом источника тока, именуется анодом, а другая, соединенная с отрицательным полюсом,— катодом.
Чем все-таки обусловливается прохождение электронного тока в водянистом проводнике? Оказывается, в таких смесях (электролитах) молекулы кислоты (щелочи, соли) под действием растворителя (в этом случае воды) распадаются на две составные части, при этом одна частичка молекулы имеет положительный электронный заряд, а другая отрицательный.
Частички молекулы, владеющие электронным зарядом, именуются ионами. При растворении в воде кислоты, соли либо щелочи в растворе появляется огромное количество как положительных, так и отрицательно заряженных ионов.
Сейчас должно стать понятным, почему через раствор прошел электронный ток, ведь меж электродами, соединенными с источником тока, сотворена разность потенциалов, по другому говоря, какой-то из них оказался заряженным положительно, а другой негативно. Под действием этой разности потенциалов положительные ионы начали перемешаться по направлению к отрицательному электроду — катоду, а отрицательные ионы — к аноду.
Таким макаром, хаотическое движение ионов стало упорядоченным встречным движением отрицательно заряженных ионов в одну сторону и положительных в другую. Этот процесс переноса зарядов и составляет течение электронного тока через электролит и происходит до того времени, пока имеется разность потенциалов на электродах. С исчезновением разности потенциалов прекращается ток через электролит, нарушается упорядоченное движение ионов, и вновь наступает хаотическое движение.
В качестве примера разглядим явление электролиза при пропускании электронного тока через раствор медного купороса CuSO4 с опущенными в него медными электродами.

Явление электролиза при прохождении тока через раствор медного купороса: С — сосуд с электролитом, Б — источник тока, В — выключатель
Тут также будет встречное движение ионов к электродам. Положительным ионом будет ион меди (Си), а отрицательным — ион кислотного остатка (SO4). Ионы меди при соприкосновении с катодом будут разряжаться (присоединяя к для себя недостающие электроны), т. е. преобразовываться в нейтральные молекулы незапятанной меди, и в виде тончайшего (молекулярного) слоя отлагаться на катоде.
Отрицательные ионы, достигнув анода, также разряжаются (отдают лишние электроны). Но при всем этом они вступают в хим реакцию с медью анода, в итоге чего к кислотному остатку SO4 присоединяется молекула меди Сu и появляется молекула медного купороса СuSО4, возвращаемая назад электролиту.
Потому что этот хим процесс протекает долгое время, то на катоде отлагается медь, выделяющаяся из электролита. При всем этом электролит заместо ушедших на катод молекул меди получает новые молекулы меди за счет растворения второго электрода — анода.
Тот же самый процесс происходит, если заместо медных взяты цинковые электроды, а электролитом служит раствор цинкового купороса ZnSO4. Цинк также будет переноситься с анода на катод.
Таким макаром, разница меж электронным током в металлах и водянистых проводниках состоит в том, что в металлах переносчиками зарядов являются только свободные электроны, т. е. отрицательные заряды, тогда как в электролитах электричество переносится разноименно заряженными частичками вещества — ионами, двигающимися в обратных направлениях. Потому молвят, что электролиты владеют ионном проводимостью.

Явление электролиза было открыто в 1837 г. Б. С. Якоби, который создавал бессчетные опыты по исследованию и усовершенствованию хим источников тока. Якоби установил, что один из электродов, помещенных в раствор медного купороса, при прохождении через него электронного тока покрывается медью.
Это явление, нареченное гальванопластикой, находит на данный момент очень огромное практическое применение. Одним из примеров тому может служить покрытие железных предметов узким слоем других металлов, т. е. никелирование, золочение, серебрение и т. д.
Электронный ток в газах
Газы (в том числе и воздух) в обыденных критериях не проводят электронный ток. К примеру, нагие провода воздушных линий, будучи подвешены параллельно друг дружке, оказываются изолированными один от другого слоем воздуха.
Но под воздействием высочайшей температуры, большой разности потенциалов и других обстоятельств газы, подобно водянистым проводникам, ионизируются, т. е. в их возникают в большенном количестве частички молекул газа, которые, являясь переносчиками электричества, содействуют прохождению через газ электронного тока.
Но совместно с тем ионизация газа отличается от ионизации водянистого проводника. Если в воды происходит распад молекулы на две заряженные части, то в газах под действием ионизации от каждой молекулы всегда отделяются электроны и остается ион в виде положительно заряженной части молекулы.
Стоит только закончить ионизацию газа, как он закончит быть проводящим, тогда как жидкость всегда остается проводником электронного тока. Как следует, проводимость газа — явление временное, зависящее от деяния наружных обстоятельств.

Но есть и другой вид разряда, именуемый дуговым разрядом либо просто электронной дугой. Явление электронной дуги было открыто сначала 19-го столетия первым русским электротехником В. В. Петровым.
В. В. Петров, проделывая бессчетные опыты, нашел, что меж 2-мя древесными углями, соединенными с источником тока, появляется непрерывный электронный разряд через воздух, сопровождаемый броским светом. В собственных трудах В. В. Петров писал, что при всем этом «черный покой довольно ярко освещен может быть». Так в первый раз был получен электронный свет, фактически применил который очередной российский ученый-электротехник Павел Николаевич Яблочков.
«Свеча Яблочкова», работа которой базирована на использовании электронной дуги, сделала в те времена реальный переворот в электротехнике.

Дуговой разряд применяется как источник света и в наши деньки, к примеру в прожекторах и проекционных аппаратах. Высочайшая температура дугового разряда позволяет использовать его для устройства дуговой печи. В текущее время дуговые печи, питаемые током очень большой силы, используются в ряде областей индустрии: для выплавки стали, чугуна, ферросплавов, бронзы и т.д. А в 1882 году Н. Н. Бенардосом дуговой разряд в первый раз был применен для резки и сварки металла.
В газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электрических и ионных пучков употребляется так именуемый тлеющий газовый разряд.
Искровой разряд применяется для измерения огромных разностей потенциалов при помощи шарового разрядника, электродами которого служат два железных шара с полированной поверхностью. Шары раздвигают, и на их подается измеряемая разность потенциалов. Потом шары сближают до того времени, пока меж ними не перескочит искра. Зная поперечник шаров, расстояние меж ними, давление, температуру и влажность воздуха, находят разность потенциалов меж шарами по особым таблицам. Этим способом можно определять с точностью до нескольких процентов разности потенциалов порядка 10-ов тыщ вольт.
Это пока все. Ну а если Вы желаете выяснить больше, то рекомендую направить внимание на диск Миши Ванюшина:
«Про электричество для начинающих в видео формате на DVD-диске»
Комментарии
Электрический ток в жидкостях и газах — Комментариев нет